Verification at the DTC

Tressa L. Fowler

Overview

- Use of NCEP verification system
- Enhancements
 - Confidence Intervals
 - Model differences
- Development of Model Evaluation Tools (MET)
- Implementation of MET for DTC research
- Collaboration with HWT, HMT
- Future plans

Staff

Many staff members from NOAA GSD and NCAR RAL / DTC have contributed to the DTC verification efforts.

Use of NCEP verification system

- Matches up forecasts with observations.
- Computes a variety of traditional verification statistics.
- Accumulates forecasts over time.
- Lead time analysis

Confidence and Model Differences

- Model comparisons difficult without confidence information.
- Since models compared on same cases, make use of pair-wise nature of the comparisons.
- Develop confidence on differences in statistics between two models.

Verification research Statistical inference

- Traditionally, most verification scores have been reported with no information about uncertainty
 - Uncertainty is related to sampling variability, observation measurement error, representativeness
- Often, selection of models has been based on very small differences in scores; small samples
- Confidence intervals and significance tests provide information about uncertainty; allow more informed decision making
- Challenges:
 - Non-normal statistics
 - Spatial and temporal correlation
 - Observation uncertainty
 - Encouraging appropriate application of confidence intervals and significance tests
 - Practical significance vs. Statistical significance

Development of Model Evaluation Tools (MET)

- Started with NCEP verification system as baseline.
- Additional statistics
- Probabilistic forecast verification
- Confidence intervals
- Neighborhood methods
- Object-based verification (MODE)
- Intensity scale verification via wavelets
- Documentation, web site, email help.

MODE example

24-h precip forecast

Precip analysis

MODE quantitative results indicate

precast is good ightly displaced too intense

contrast:

OD = 0.40 AR = 0.56SI = 0.27

Spatial Method Intercomparison Project

What do the various methods measure?

Attribute	Traditional	Feature - based	Neighbor- hood	Scale	Field Defor- mation
Perf at different scales	Indirectly	Indirectly	Yes	Yes	No
Location errors	No	Yes	Indirectly	Indirectly	Yes
Intensity errors	Yes	Yes	Yes	Yes	Yes
Structure errors	No	Yes	No	No	Yes
Hits, etc.	Yes	Yes	Yes	Indirectly	Yes

MET connections to the community

Goals:

Incorporate state-of-the-art methods contributed by the modeling, research, operational, and verification

communities

Examples:

- Intensity-scale approach
- Neighborhood methods
- Graphical techniques

Outreach

- Collaborations with HWT, HMT
- Town Hall meetings at AMS, NCAR
- Workshops (2007, 2008, 2009)
 - International verification experts + NWP experts + DTC staff
 - Guidance on methods and approaches to be included
- Spatial method intercomparison project (ICP)
- DTC Visitor Program
 - M. Baldwin: Verification testbed
 - B. Casati: Intensity-scale approach
- Demonstrations

MET usage

- Initial release of MET July 2007.
- Over 300 registered users.
- Will be implemented to verify WRF for DTC tests this year.
- HWT spring experiment usage, 2008 and 2009.
- HMT usage expected beginning this fall.

2009 HWT Spring Exp May 4- Jun 5

Focus: Evaluate radar assimilation impact

Models and Obs:

CAPS 4 km WRF-ARW with and without radar assimilation

 NOAA High Resolution Rapid Refresh (HRRR) grids for Vortex 2

NMQ Q2 QPE and Composite Reflectivity

Displays:

MET real-time evaluation at DTC

Graphical results displayed on web-interface

DTC Participation:

On-site participation for 5 weeks anticipated.

HMT Collaboration

- Verification is an initial, important area of collaboration
- Near-term goal: Implement and demonstrate existing capabilities
 - Event-based precipitation verification (varying thresholds)
 - MET traditional and spatial verification methods
 - Enhance tools to provide HMT-relevant information
- Longer-term goals: Enhance current capabilities
 - Observation uncertainty
 - Spatial verification methods for ensemble forecasts
 - Identify and implement capabilities needed for southeast region

Future Plans

• MET

- More data formats.
- Database and display.
- Ensemble forecast methods.
- Cloud verification.

- DTC verification team
- Research new verification methods.
- Promote use of MET.
- Collaborate with WRF community.

Conclusions

- Verification is an essential component of the DTC mission.
- Verification is treated both as an independent scientific discipline and as a service.
- Collaborations can take advantage of either or both.